{ "id": "2301.06537", "version": "v1", "published": "2023-01-16T17:46:42.000Z", "updated": "2023-01-16T17:46:42.000Z", "title": "On the Pohozaev identity for the fractional $p$-Laplacian operator in $\\mathbb{R}^N$", "authors": [ "Vincenzo Ambrosio" ], "categories": [ "math.AP" ], "abstract": "In this paper, we show the existence of a nontrivial weak solution for a nonlinear problem involving the fractional $p$-Laplacian operator and a Berestycki-Lions type nonlinearity. This solution satisfies a Pohozaev identity. Moreover, we prove that any sufficiently smooth solution fulfills the Pohozaev identity.", "revisions": [ { "version": "v1", "updated": "2023-01-16T17:46:42.000Z" } ], "analyses": { "keywords": [ "pohozaev identity", "laplacian operator", "fractional", "nontrivial weak solution", "berestycki-lions type nonlinearity" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }