{ "id": "2301.06353", "version": "v1", "published": "2023-01-16T10:53:17.000Z", "updated": "2023-01-16T10:53:17.000Z", "title": "Composition operators on Gelfand-Shilov classes", "authors": [ "Héctor Ariza", "Carmen Fernández", "Antonio Galbis" ], "categories": [ "math.FA" ], "abstract": "We study composition operators on global classes of ultradifferentiable functions of Beurling type invariant under Fourier transform. In particular, for the classical Gelfand-Shilov classes $\\Sigma_d,\\ d > 1,$ we prove that a necessary condition for the composition operator $f\\mapsto f\\circ \\psi$ to be well defined is the boundedness of $\\psi'.$ We find the optimal index $d'$ for which $C_\\psi(\\Sigma_d({\\mathbb R}))\\subset \\Sigma_{d'}({\\mathbb R})$ holds for any non-constant polynomial $\\psi.$", "revisions": [ { "version": "v1", "updated": "2023-01-16T10:53:17.000Z" } ], "analyses": { "subjects": [ "47B33", "46F05" ], "keywords": [ "study composition operators", "optimal index", "global classes", "non-constant polynomial", "necessary condition" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }