{ "id": "2301.05830", "version": "v1", "published": "2023-01-14T06:28:13.000Z", "updated": "2023-01-14T06:28:13.000Z", "title": "Four-vertex traces of finite sets", "authors": [ "Peter Frankl", "Jian Wang" ], "categories": [ "math.CO" ], "abstract": "Let $[n]=X_1\\cup X_2\\cup X_3$ be a partition with $\\lfloor\\frac{n}{3}\\rfloor \\leq |X_i|\\leq \\lceil\\frac{n}{3}\\rceil$ and define $\\mathcal{G}=\\{G\\subset [n]\\colon |G\\cap X_i|\\leq 1, 1\\leq i\\leq 3\\}$. It is easy to check that the trace $\\mathcal{G}_{\\mid Y}:=\\{G\\cap Y\\colon G\\in \\mathcal{G}\\}$ satisfies $|\\mathcal{G}_{\\mid Y}|\\leq 12$ for all 4-sets $Y\\subset [n]$. For $n\\geq 25$ it is proven that whenever $\\mathcal{F}\\subset 2^{[n]}$ satisfies $|\\mathcal{F}|>|\\mathcal{G}|$ then $|\\mathcal{F}_{\\mid C}|\\geq 13$ for some $C\\subset [n]$, $|C|=4$. Several further results of a similar flavor are established as well.", "revisions": [ { "version": "v1", "updated": "2023-01-14T06:28:13.000Z" } ], "analyses": { "keywords": [ "finite sets", "four-vertex traces", "similar flavor" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }