{ "id": "2301.05044", "version": "v1", "published": "2023-01-12T14:17:42.000Z", "updated": "2023-01-12T14:17:42.000Z", "title": "On almost-prime $k$-tuples", "authors": [ "Bin Chen" ], "categories": [ "math.NT" ], "abstract": "Let $\\tau$ denote the divisor function and $\\mathcal{H}=\\{h_{1},...,h_{k}\\}$ be an admissible set. We prove that there are infinitely many $n$ for which the product $\\prod_{i=1}^{k}(n+h_{i})$ is square-free and $\\sum_{i=1}^{k}\\tau(n+h_{i})\\leq \\lfloor \\rho_{k}\\rfloor$, where $\\rho_{k}$ is asymptotic to $\\frac{2126}{2853} k^{2}$. It improves a previous result of M. Ram Murty and A. Vatwani, replacing $2126/2853$ by $3/4$. The main ingredients in our proof are the higher rank Selberg sieve and Irving-Wu-Xi estimate for the divisor function in arithmetic progressions to smooth moduli.", "revisions": [ { "version": "v1", "updated": "2023-01-12T14:17:42.000Z" } ], "analyses": { "subjects": [ "11N05", "11N35", "11N36" ], "keywords": [ "almost-prime", "divisor function", "higher rank selberg sieve", "main ingredients", "ram murty" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }