{ "id": "2301.04084", "version": "v1", "published": "2023-01-10T17:18:00.000Z", "updated": "2023-01-10T17:18:00.000Z", "title": "The dimension of harmonic measure on some AD-regular flat sets of fractional dimension", "authors": [ "Xavier Tolsa" ], "categories": [ "math.CA", "math.AP" ], "abstract": "In this paper it is shown that if $E\\subset\\mathbb R^{n+1}$ is an $s$-AD regular compact set, with $s\\in [n-\\frac12,n)$, and $E$ is contained in a hyperplane or, more generally, in an $n$-dimensional $C^1$ manifold, then the Hausdorff dimension of the harmonic measure for the domain $\\mathbb R^{n+1}\\setminus E$ is strictly smaller than $s$, i.e., than the Hausdorff dimension of $E$.", "revisions": [ { "version": "v1", "updated": "2023-01-10T17:18:00.000Z" } ], "analyses": { "subjects": [ "31B15", "31B20" ], "keywords": [ "ad-regular flat sets", "harmonic measure", "fractional dimension", "hausdorff dimension", "ad regular compact set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }