{ "id": "2301.03165", "version": "v1", "published": "2023-01-09T04:42:34.000Z", "updated": "2023-01-09T04:42:34.000Z", "title": "Explicit bounds on $ΞΆ(s)$ in the critical strip and a zero-free region", "authors": [ "Andrew Yang" ], "comment": "51 pages. Comments are welcome", "categories": [ "math.NT" ], "abstract": "We derive explicit upper bounds for the Riemann zeta-function $\\zeta(\\sigma + it)$ on the lines $\\sigma = 1 - k/(2^k - 2)$ for integer $k \\ge 4$. This is used to show that the zeta-function has no zeroes in the region $$\\sigma > 1 - \\frac{\\log\\log|t|}{21.432\\log|t|},\\qquad |t| \\ge 3.$$ This is the largest known zero-free region for $\\exp(209) \\le t \\le \\exp(5\\cdot 10^{5})$. Our results rely on an explicit version of the van der Corput $A^nB$ process for bounding exponential sums.", "revisions": [ { "version": "v1", "updated": "2023-01-09T04:42:34.000Z" } ], "analyses": { "subjects": [ "11M06", "11M26", "11Y35" ], "keywords": [ "zero-free region", "explicit bounds", "critical strip", "van der corput", "derive explicit upper bounds" ], "note": { "typesetting": "TeX", "pages": 51, "language": "en", "license": "arXiv", "status": "editable" } } }