{ "id": "2301.02203", "version": "v1", "published": "2023-01-05T18:09:50.000Z", "updated": "2023-01-05T18:09:50.000Z", "title": "Divisibility of character values of the symmetric group by prime powers", "authors": [ "Sarah Peluse", "Kannan Soundararajan" ], "comment": "In memory of Chanda Sekhar Raju. (17 pages)", "categories": [ "math.CO", "math.NT", "math.RT" ], "abstract": "Proving a conjecture of Miller, we show that as $n$ tends to infinity almost all entries in the character table of $S_n$ are divisible by any given prime power. This extends our earlier work which treated divisibility by primes.", "revisions": [ { "version": "v1", "updated": "2023-01-05T18:09:50.000Z" } ], "analyses": { "keywords": [ "prime power", "symmetric group", "character values", "earlier work" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }