{ "id": "2212.14323", "version": "v1", "published": "2022-12-29T14:33:20.000Z", "updated": "2022-12-29T14:33:20.000Z", "title": "Independence numbers of polyhedral graphs", "authors": [ "Sébastien Gaspoz", "Riccardo W. Maffucci" ], "categories": [ "math.CO" ], "abstract": "A polyhedral graph is a $3$-connected planar graph. We find the least possible order $p(k,a)$ of a polyhedral graph containing a $k$-independent set of size $a$ for all positive integers $k$ and $a$. In the case $k = 1$ and $a$ even, we prove that the extremal graphs are exactly the vertex-face (radial) graphs of maximal planar graphs.", "revisions": [ { "version": "v1", "updated": "2022-12-29T14:33:20.000Z" } ], "analyses": { "subjects": [ "05C69", "05C35", "05C10", "52B05" ], "keywords": [ "independence numbers", "maximal planar graphs", "independent set", "connected planar graph", "extremal graphs" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }