{ "id": "2212.12748", "version": "v1", "published": "2022-12-24T15:12:21.000Z", "updated": "2022-12-24T15:12:21.000Z", "title": "Non-degeneracy of critical points of the squared norm of the second fundamental form on manifolds with minimal boundary", "authors": [ "Sergio Cruz-Blázquez", "Angela Pistoia" ], "comment": "13 pages", "categories": [ "math.AP", "math.DG" ], "abstract": "Let $(M,\\bar g)$ be a compact Riemannian manifold with minimal boundary such that the second fundamental form is nowhere vanishing on $\\partial M$. We show that for a generic Riemannian metric $\\bar g$, the squared norm of the second fundamental form is a Morse function, i.e. all its critical points are non-degenerate. We show that the generality of this property holds when we restrict ourselves to the conformal class of the initial metric on $M$.", "revisions": [ { "version": "v1", "updated": "2022-12-24T15:12:21.000Z" } ], "analyses": { "subjects": [ "58J60", "53C21" ], "keywords": [ "second fundamental form", "minimal boundary", "critical points", "squared norm", "non-degeneracy" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }