{ "id": "2212.12625", "version": "v1", "published": "2022-12-24T01:03:17.000Z", "updated": "2022-12-24T01:03:17.000Z", "title": "The Koszul complex and a certain induced module for a quantum group", "authors": [ "Toshiyuki Tanisaki" ], "comment": "35 pages", "categories": [ "math.RT", "math.QA" ], "abstract": "We give a description of a certain induced module for a quantum group of type $A$. Together with our previous results this gives a proof of Lusztig's conjectural multiplicity formula for non-restricted modules over the De Concini-Kac type quantized enveloping algebra of type $A_n$ at the $\\ell$-th root of unity, where $\\ell$ is an odd integer satisfying $\\ell\\geqq n+1$.", "revisions": [ { "version": "v1", "updated": "2022-12-24T01:03:17.000Z" } ], "analyses": { "subjects": [ "20G42", "17B37" ], "keywords": [ "quantum group", "induced module", "koszul complex", "lusztigs conjectural multiplicity formula", "concini-kac type quantized enveloping algebra" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable" } } }