{ "id": "2212.12473", "version": "v1", "published": "2022-12-23T17:02:30.000Z", "updated": "2022-12-23T17:02:30.000Z", "title": "Counterexample to a Conjecture of Dombi in Additive Number Theory", "authors": [ "Jeffrey Shallit" ], "categories": [ "math.NT", "cs.DM", "cs.FL", "math.CO" ], "abstract": "We disprove a 2002 conjecture of Dombi from additive number theory. More precisely, we find a set $A \\subset N$ with the property that $N \\setminus A$ is infinite, but the sequence $n \\rightarrow |\\{ (a,b,c) : n=a+b+c$ and $a,b,c \\in A \\}|$ counting the number of $3$-compositions is strictly increasing.", "revisions": [ { "version": "v1", "updated": "2022-12-23T17:02:30.000Z" } ], "analyses": { "keywords": [ "additive number theory", "conjecture", "counterexample" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }