{ "id": "2212.11789", "version": "v1", "published": "2022-12-22T15:22:05.000Z", "updated": "2022-12-22T15:22:05.000Z", "title": "Euler's Equation via Lagrangian Dynamics with Generalized Coordinates", "authors": [ "Dennis S. Bernstein", "Ankit Goel", "Omran Kouba" ], "categories": [ "math.DS" ], "abstract": "Euler's equation relates the change in angular momentum of a rigid body to the applied torque. This paper fills a gap in the literature by using Lagrangian dynamics to derive Euler's equation in terms of generalized coordinates. This is done by parameterizing the angular velocity vector in terms of 3-2-1 and 3-1-3 Euler angles as well as Euler parameters, that is, unit quaternions.", "revisions": [ { "version": "v1", "updated": "2022-12-22T15:22:05.000Z" } ], "analyses": { "keywords": [ "lagrangian dynamics", "generalized coordinates", "eulers equation relates", "angular velocity vector", "euler parameters" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }