{ "id": "2212.11463", "version": "v1", "published": "2022-12-22T03:19:23.000Z", "updated": "2022-12-22T03:19:23.000Z", "title": "Bilinear maximal functions associated with degenerate surfaces", "authors": [ "Sanghyuk Lee", "Kalachand Shuin" ], "comment": "21 pages, 3 figures", "categories": [ "math.CA" ], "abstract": "We study $L^{p}\\times L^{q}\\rightarrow L^{r}$-boundedness of (sub)bilinear maximal functions associated with degenerate hypersurfaces. First, we obtain the maximal bound on the sharp range of exponents $p,q,r$ (except some border line cases) for the bilinear maximal functions given by the model surface $\\big\\{(y,z)\\in\\mathbb{R}^{n}\\times \\mathbb{R}^{n}:|y|^{l_{1}}+|z|^{l_{2}}=1\\big\\}$, $(l_{1},l_{2})\\in [1,\\infty)^2$, $n\\ge 2$. Our result manifests that nonvanishing Gaussian curvature is not good enough, in contrast with $L^p$-boundedness of the (sub)linear maximal operator associated to hypersurfaces, to characterize the best possible maximal boundedness. Secondly, we consider the bilinear maximal function associated to the finite type curve in $\\mathbb R^2$ and obtain a complete characterization of the maximal bound. We also prove multilinear generalizations of the aforementioned results.", "revisions": [ { "version": "v1", "updated": "2022-12-22T03:19:23.000Z" } ], "analyses": { "subjects": [ "42B25", "42B15", "46T30" ], "keywords": [ "bilinear maximal function", "degenerate surfaces", "linear maximal operator", "border line cases", "finite type curve" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }