{ "id": "2212.11356", "version": "v1", "published": "2022-12-21T20:48:32.000Z", "updated": "2022-12-21T20:48:32.000Z", "title": "Parity of 4-regular and 8-regular partition functions", "authors": [ "Giacomo Cherubini", "Pietro Mercuri" ], "comment": "8 pages", "categories": [ "math.NT" ], "abstract": "We give a complete characterization of the parity of $b_8(n)$, the number of $8$-regular partitions of $n$. Namely, we prove that $b_8(n)$ is odd or even depending on whether or not we have the factorisation $24n+7=p^{4a+1}m^2$, for some prime $p\\nmid m$ and $a\\ge 0$.", "revisions": [ { "version": "v1", "updated": "2022-12-21T20:48:32.000Z" } ], "analyses": { "subjects": [ "11P83", "11F20" ], "keywords": [ "partition functions", "complete characterization", "regular partitions" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }