{ "id": "2212.11058", "version": "v1", "published": "2022-12-21T15:07:22.000Z", "updated": "2022-12-21T15:07:22.000Z", "title": "Spectrum of $3$-uniform $6$- and $9$-cycle systems over $K_v^{(3)}-I$", "authors": [ "Anita Keszler", "Zsolt Tuza" ], "comment": "45 pages", "categories": [ "math.CO" ], "abstract": "We consider edge decompositions of $K_v^{(3)}-I$, the complete 3-uniform hypergraph of order $v$ minus a 1-factor (parallel class, packing of $v/3$ disjoint edges). We prove that a decomposition into tight 6-cycles exists if and only if $v\\equiv 0,3,6$ (mod 12) and $v\\geq 6$; and a decomposition into tight 9-cycles exists for all $v\\geq 9$ divisible by 3. These results are complementary to the theorems of Akin et al. [Discrete Math. 345 (2022)] and Bunge et al. [Australas. J. Combin. 80 (2021)].", "revisions": [ { "version": "v1", "updated": "2022-12-21T15:07:22.000Z" } ], "analyses": { "subjects": [ "05C65", "05C51", "05C38" ], "keywords": [ "cycle systems", "discrete math", "disjoint edges", "edge decompositions", "parallel class" ], "note": { "typesetting": "TeX", "pages": 45, "language": "en", "license": "arXiv", "status": "editable" } } }