{ "id": "2212.10128", "version": "v1", "published": "2022-12-20T09:55:05.000Z", "updated": "2022-12-20T09:55:05.000Z", "title": "Sums of transcendental dilates", "authors": [ "David Conlon", "Jeck Lim" ], "comment": "7 pages", "categories": [ "math.CO" ], "abstract": "We show that there is an absolute constant $c>0$ such that $|A+\\lambda\\cdot A|\\geq e^{c\\sqrt{\\log |A|}}|A|$ for any finite subset $A$ of $\\mathbb{R}$ and any transcendental number $\\lambda\\in\\mathbb{R}$. By a construction of Konyagin and Laba, this is best possible up to the constant $c$.", "revisions": [ { "version": "v1", "updated": "2022-12-20T09:55:05.000Z" } ], "analyses": { "subjects": [ "05D99", "11B13", "11B75", "11B30" ], "keywords": [ "transcendental dilates", "transcendental number", "absolute constant", "finite subset" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }