{ "id": "2212.09461", "version": "v1", "published": "2022-12-19T13:55:14.000Z", "updated": "2022-12-19T13:55:14.000Z", "title": "Breaking the 4 barrier for the bound of a generating set of the class group", "authors": [ "Loïc Grenié", "Giuseppe Molteni" ], "comment": "11 pages, 1 table", "categories": [ "math.NT" ], "abstract": "Under the assumption of the validity of the Generalized Riemann Hypothesis, we prove that the class group of every field of degree $n$ and discriminant with absolute value $\\Delta$ can be generated using prime ideals with norm $\\leq (4-1/(2n))\\log^2\\Delta$, except for a finite number of fields of degree $n\\leq 8$. For those fields, the conclusion holds with the slightly larger limit $(4-1/(3n))\\log^2\\Delta$.", "revisions": [ { "version": "v1", "updated": "2022-12-19T13:55:14.000Z" } ], "analyses": { "subjects": [ "11R04", "11R29", "11Y40" ], "keywords": [ "class group", "generating set", "generalized riemann hypothesis", "absolute value", "prime ideals" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }