{ "id": "2212.09419", "version": "v1", "published": "2022-12-19T12:52:29.000Z", "updated": "2022-12-19T12:52:29.000Z", "title": "Toward Butler's conjecture", "authors": [ "Donghyun Kim", "Seung Jin Lee", "Jaeseong Oh" ], "comment": "49 pages, 12 figures, 12 tables, comments are welcome", "categories": [ "math.CO", "math.RT" ], "abstract": "For a partition $\\nu$, let $\\lambda,\\mu\\subseteq \\nu$ be two distinct partitions such that $|\\nu/\\lambda|=|\\nu/\\mu|=1$. Butler conjectured that the divided difference $\\operatorname{I}_{\\lambda,\\mu}[X;q,t]=(T_\\lambda\\widetilde{H}_\\mu[X;q,t]-T_\\mu\\widetilde{H}_\\lambda[X;q,t])/(T_\\lambda-T_\\mu)$ of modified Macdonald polynomials of two partitions $\\lambda$ and $\\mu$ is Schur positive. By introducing a new LLT equivalence called column exchange rule, we give a combinatorial formula for $\\operatorname{I}_{\\lambda,\\mu}[X;q,t]$, which is a positive monomial expansion. We also prove Butler's conjecture for some special cases.", "revisions": [ { "version": "v1", "updated": "2022-12-19T12:52:29.000Z" } ], "analyses": { "subjects": [ "05E05", "05E10", "05A05" ], "keywords": [ "butlers conjecture", "column exchange rule", "llt equivalence", "distinct partitions", "modified macdonald polynomials" ], "note": { "typesetting": "TeX", "pages": 49, "language": "en", "license": "arXiv", "status": "editable" } } }