{ "id": "2212.07955", "version": "v1", "published": "2022-12-15T16:40:48.000Z", "updated": "2022-12-15T16:40:48.000Z", "title": "Ground state solution of a Kirchhoff type equation with singular potentials", "authors": [ "Thanh Viet Phan" ], "comment": "16 pages", "categories": [ "math.AP", "math-ph", "math.MP", "quant-ph" ], "abstract": "We study the existence and blow-up behavior of minimizers for $E(b)=\\inf\\Big\\{\\mathcal{E}_b(u) \\,|\\, u\\in H^1(R^2), \\|u\\|_{L^2}=1\\Big\\},$ here $\\mathcal{E}_b(u)$ is the Kirchhoff energy functional defined by $\\mathcal{E}_b(u)= \\int_{R^2} |\\nabla u|^2 dx+ b(\\int_{R^2} |\\nabla u|^2d x)^2+\\int_{R^2} V(x) |u(x)|^2 dx - \\frac{a}{2} \\int_{R^2} |u|^4 dx,$ where $a>0$ and $b>0$ are constants. When $V(x)= -|x|^{-p}$ with $0