{ "id": "2212.07880", "version": "v1", "published": "2022-12-15T15:04:40.000Z", "updated": "2022-12-15T15:04:40.000Z", "title": "Twin-width of random graphs", "authors": [ "Jungho Ahn", "Debsoumya Chakraborti", "Kevin Hendrey", "Donggyu Kim", "Sang-il Oum" ], "comment": "34 pages, 3 figures", "categories": [ "math.CO", "cs.DM" ], "abstract": "We investigate the twin-width of the Erd\\H{o}s-R\\'enyi random graph $G(n,p)$. We unveil a surprising behavior of this parameter by showing the existence of a constant $p^*\\approx 0.4$ such that with high probability, when $p^*\\le p\\le 1-p^*$, the twin-width is asymptotically $2p(1-p)n$, whereas, when $p1-p^*$, the twin-width is significantly higher than $2p(1-p)n$. In particular, we show that the twin-width of $G(n,1/2)$ is concentrated around $n/2 - (\\sqrt{3n \\log n})/2$ within an interval of length $o(\\sqrt{n\\log n})$. For the sparse random graph, we show that with high probability, the twin-width of $G(n,p)$ is $\\Theta(n\\sqrt{p})$ when $(726\\ln n)/n\\leq p\\leq1/2$.", "revisions": [ { "version": "v1", "updated": "2022-12-15T15:04:40.000Z" } ], "analyses": { "subjects": [ "05C35" ], "keywords": [ "twin-width", "high probability", "sparse random graph", "surprising behavior" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable" } } }