{ "id": "2212.07694", "version": "v1", "published": "2022-12-15T10:12:03.000Z", "updated": "2022-12-15T10:12:03.000Z", "title": "Spectral stability of multiple periodic waves for the Schrodinger system with cubic nonlinearity", "authors": [ "Fábio Natali", "Gabriel E. Bittencourt Moraes" ], "comment": "21 pages, 1 figure", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "Results concerning the existence and spectral stability and instability of multiple periodic wave solutions for the nonlinear Schr\\\"odinger system with \\textit{dnoidal} and \\textit{cnoidal} profile will be determined in this manuscript. The spectral analysis for the corresponding linearized operator is established by using the comparison theorem and tools of Floquet theory. The main results are determined by applying the spectral stability theory in \\cite{KapitulaKevrekidisSandstedeI} and \\cite{KapitulaKevrekidisSandstedeII} via Krein signature.", "revisions": [ { "version": "v1", "updated": "2022-12-15T10:12:03.000Z" } ], "analyses": { "subjects": [ "76B25", "35Q51", "35Q70" ], "keywords": [ "cubic nonlinearity", "schrodinger system", "multiple periodic wave solutions", "spectral stability theory", "spectral analysis" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }