{ "id": "2212.07615", "version": "v1", "published": "2022-12-15T04:46:47.000Z", "updated": "2022-12-15T04:46:47.000Z", "title": "Legendre singularities of sub-Riemannian geodesics", "authors": [ "Goo Ishikawa", "Yumiko Kitagawa" ], "comment": "2 figures", "categories": [ "math.DG" ], "abstract": "Let $M$ be a surface with a Riemannian metric and $UM$ the unit tangent bundle over $M$ with the canonical contact sub-Riemannian structure $D$ on $UM$. In this paper, the complete local classification of singularities, under the Legendre fibration $UM$ over $M$, is given for sub-Riemannian geodesics of $(UM, D)$. Legendre singularities of sub-Riemannian geodesics are classified completely also for another Legendre fibration from $UM$ to the space of Riemannian geodesics on $M$. The duality on Legendre singularities is observed related to the pendulum motion.", "revisions": [ { "version": "v1", "updated": "2022-12-15T04:46:47.000Z" } ], "analyses": { "subjects": [ "53D25", "53B10", "49K15", "58K40", "53A20" ], "keywords": [ "sub-riemannian geodesics", "legendre singularities", "legendre fibration", "unit tangent bundle", "canonical contact sub-riemannian structure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }