{ "id": "2212.07604", "version": "v1", "published": "2022-12-15T03:32:11.000Z", "updated": "2022-12-15T03:32:11.000Z", "title": "Solubility of Additive Forms of Twice Odd Degree over Totally Ramified Extensions of $\\mathbb{Q}_2$", "authors": [ "Drew Duncan" ], "comment": "arXiv admin note: text overlap with arXiv:2207.09556", "categories": [ "math.NT" ], "abstract": "We prove that an additive form of degree $d=2m$, $m$ odd over any totally ramified extension of $\\mathbb{Q}_2$ has a nontrivial zero if the number of variables $s$ satisifies $s \\ge \\frac{d^2}{4} + 3d + 1$.", "revisions": [ { "version": "v1", "updated": "2022-12-15T03:32:11.000Z" } ], "analyses": { "subjects": [ "11D72", "11D88", "11E76" ], "keywords": [ "totally ramified extension", "twice odd degree", "additive form", "solubility" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }