{ "id": "2212.07577", "version": "v1", "published": "2022-12-15T01:33:48.000Z", "updated": "2022-12-15T01:33:48.000Z", "title": "Fourier bases of a class of planar self-affine measures", "authors": [ "Ming-Liang Chen", "Jing-Cheng Liu", "Zhi-Yong Wang" ], "categories": [ "math.FA" ], "abstract": "Let $\\mu_{M,D}$ be the planar self-affine measure generated by an expansive integer matrix $M\\in M_2(\\mathbb{Z})$ and a non-collinear integer digit set $D=\\left\\{\\begin{pmatrix} 0\\\\0\\end{pmatrix},\\begin{pmatrix} \\alpha_{1}\\\\ \\alpha_{2} \\end{pmatrix}, \\begin{pmatrix} \\beta_{1}\\\\ \\beta_{2} \\end{pmatrix}, \\begin{pmatrix} -\\alpha_{1}-\\beta_{1}\\\\ -\\alpha_{2}-\\beta_{2} \\end{pmatrix}\\right\\}$. In this paper, we show that $\\mu_{M,D}$ is a spectral measure if and only if there exists a matrix $Q\\in M_2(\\mathbb{R})$ such that $(\\tilde{M},\\tilde{D})$ is admissible, where $\\tilde{M}=QMQ^{-1}$ and $\\tilde{D}=QD$. In particular, when $\\alpha_1\\beta_2-\\alpha_2\\beta_1\\notin 2\\Bbb Z$, $\\mu_{M,D}$ is a spectral measure if and only if $M\\in M_2(2\\mathbb{Z})$.", "revisions": [ { "version": "v1", "updated": "2022-12-15T01:33:48.000Z" } ], "analyses": { "subjects": [ "28A25", "28A80", "42C05", "46C05" ], "keywords": [ "planar self-affine measure", "fourier bases", "non-collinear integer digit set", "spectral measure", "expansive integer matrix" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }