{ "id": "2212.06109", "version": "v1", "published": "2022-12-12T18:32:04.000Z", "updated": "2022-12-12T18:32:04.000Z", "title": "Optimal thresholds for Latin squares, Steiner Triple Systems, and edge colorings", "authors": [ "Vishesh Jain", "Huy Tuan Pham" ], "comment": "12 pages", "categories": [ "math.CO", "cs.DM", "math.PR" ], "abstract": "We show that the threshold for the binomial random $3$-partite, $3$-uniform hypergraph $G^{3}((n,n,n),p)$ to contain a Latin square is $\\Theta(\\log{n}/n)$. We also prove analogous results for Steiner triple systems and proper list edge-colorings of the complete (bipartite) graph with random lists. Our results answer several related questions of Johansson, Luria-Simkin, Casselgren-H\\\"aggkvist, Simkin, and Kang-Kelly-K\\\"uhn-Methuku-Osthus.", "revisions": [ { "version": "v1", "updated": "2022-12-12T18:32:04.000Z" } ], "analyses": { "keywords": [ "steiner triple systems", "latin square", "edge colorings", "optimal thresholds", "proper list edge-colorings" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }