{ "id": "2212.05234", "version": "v1", "published": "2022-12-10T07:29:34.000Z", "updated": "2022-12-10T07:29:34.000Z", "title": "A local converse theorem for $Mp_{2n}$ : the generic case", "authors": [ "Jaeho Haan" ], "comment": "Comments are welcome!", "categories": [ "math.NT", "math.RT" ], "abstract": "In this paper, we prove the local converse theorem for $Mp_{2n}$ via the precise local theta correspondence between $Mp_{2n}$ and $SO_{2n+1}$. As an application, we prove the rigidity theorem for irreducible generic cuspidal automorphic representations of $Mp_{2n}$", "revisions": [ { "version": "v1", "updated": "2022-12-10T07:29:34.000Z" } ], "analyses": { "keywords": [ "local converse theorem", "generic case", "irreducible generic cuspidal automorphic representations", "precise local theta correspondence", "rigidity theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }