{ "id": "2212.04766", "version": "v1", "published": "2022-12-09T10:44:03.000Z", "updated": "2022-12-09T10:44:03.000Z", "title": "Wasserstein distance estimates for jump-diffusion processes", "authors": [ "Jean-Christophe Breton", "Nicolas Privault" ], "categories": [ "math.PR" ], "abstract": "We derive Wasserstein distance bounds between the probability distributions of a stochastic integral (It\\^o) process with jumps $(X_t)_{t\\in [0,T]}$ and a jump-diffusion process $(X^\\ast_t)_{t\\in [0,T]}$. Our bounds are expressed using the stochastic characteristics of $(X_t)_{t\\in [0,T]}$ and the jump-diffusion coefficients of $(X^\\ast_t)_{t\\in [0,T]}$ evaluated in $X_t$, and apply in particular to the case of different jump characteristics. Our approach uses stochastic calculus arguments and $L^p$ integrability results for the flow of stochastic differential equations with jumps, without relying on the Stein equation.", "revisions": [ { "version": "v1", "updated": "2022-12-09T10:44:03.000Z" } ], "analyses": { "subjects": [ "60H05", "60H10", "60G57", "60G44", "60J60", "60J76" ], "keywords": [ "wasserstein distance estimates", "jump-diffusion process", "stochastic calculus arguments", "stochastic differential equations", "derive wasserstein distance bounds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }