{ "id": "2212.03661", "version": "v1", "published": "2022-12-07T14:23:59.000Z", "updated": "2022-12-07T14:23:59.000Z", "title": "Rational maps with integer multipliers", "authors": [ "Xavier Buff", "Thomas Gauthier", "Valentin Huguin", "Jasmin Raissy" ], "comment": "6 pages", "categories": [ "math.DS", "math.CV" ], "abstract": "Let $O_K$ be the ring of integers of an imaginary quadratic field. Recently, Zhuchao Ji and Junyi Xie proved that rational maps whose multipliers at all periodic points belong to $O_K$ are power maps, Chebyshev maps or Latt\\`es maps. Their proof relies on a non-archimedean result by Benedetto, Ingram, Jones and Levy. In this note, we show that one may avoid using this non-archimedean result by considering a differential equation instead.", "revisions": [ { "version": "v1", "updated": "2022-12-07T14:23:59.000Z" } ], "analyses": { "subjects": [ "37P35", "37F10", "37P05" ], "keywords": [ "rational maps", "integer multipliers", "non-archimedean result", "imaginary quadratic field", "periodic points belong" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }