{ "id": "2212.03418", "version": "v1", "published": "2022-12-07T03:05:07.000Z", "updated": "2022-12-07T03:05:07.000Z", "title": "Generalized Lindemann-Weierstrass and Gelfond-Schneider-Baker Theorems", "authors": [ "Suk-Geun Hwang", "Choon Ho Lee", "Ki-Bong Nam Rachel M Chaphalkar" ], "comment": "6 pages. arXiv admin note: text overlap with arXiv:2106.04055", "categories": [ "math.NT" ], "abstract": "We generalize Lindemann-Weierstrass theorem and Gelfond -Schneider-Baker Theorem. We find new transcendental numbers in this work. There are several methods to find transcendental numbers in the work. Recently transcendental numbers are applicable for cryptography (\\cite{G}, \\cite{K}, \\cite{V}). Since we are able to make many tables of random numbers, the new transcendental numbers will be applicable for encryption and decryption in this work (\\cite{V}, \\cite{Z}).", "revisions": [ { "version": "v1", "updated": "2022-12-07T03:05:07.000Z" } ], "analyses": { "subjects": [ "11J81", "11J85" ], "keywords": [ "gelfond-schneider-baker theorems", "transcendental numbers", "generalized lindemann-weierstrass", "generalize lindemann-weierstrass theorem", "random numbers" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }