{ "id": "2212.02983", "version": "v1", "published": "2022-12-05T17:50:32.000Z", "updated": "2022-12-05T17:50:32.000Z", "title": "Pairwise disjoint Moebius bands in space", "authors": [ "Olga Frolkina" ], "journal": "J. of Knot Theory and its Ramif. 27 (2018) 9, art.1842005", "doi": "10.1142/S0218216518420051", "categories": [ "math.GT", "math.GN" ], "abstract": "V.V.Grushin and V.P.Palamodov proved in 1962 that it is impossible to place in $R^3$ uncountably many pairwise disjoint polyhedra each homeomorphic to the Moebius band. We generalize this result in two directions. First, we give a generalization of this result to tame subsets in $R^N$, $N\\geqslant 3$. Second, we show that in case of $R^3$ the theorem holds for arbitrarily topologically embedded (not necessarily tame) Moebius bands.", "revisions": [ { "version": "v1", "updated": "2022-12-05T17:50:32.000Z" } ], "analyses": { "subjects": [ "57M30", "57N35", "54C25" ], "keywords": [ "pairwise disjoint moebius bands", "theorem holds", "tame subsets", "pairwise disjoint polyhedra", "necessarily tame" ], "tags": [ "journal article" ], "publication": { "publisher": "World Scientific" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }