{ "id": "2212.01652", "version": "v1", "published": "2022-12-03T17:03:49.000Z", "updated": "2022-12-03T17:03:49.000Z", "title": "Tangent groupoid and tangent cones in sub-Riemannian geometry", "authors": [ "Omar Mohsen" ], "categories": [ "math.DG", "math.MG", "math.OA" ], "abstract": "Let $X_1,\\cdots,X_m$ be vector fields satisfying H\\\"ormander's Lie bracket generating condition on a smooth manifold $M$. We generalise Connes's tangent groupoid, by constructing a completion of the space $M\\times M\\times \\mathbb{R}_+^\\times$ using the sub-Riemannian metric. We use our space to calculate all the tangent cones of the sub-Riemannian metric in the sense of the Gromov-Hausdorff distance. This generalises a result of Bella\\\"iche.", "revisions": [ { "version": "v1", "updated": "2022-12-03T17:03:49.000Z" } ], "analyses": { "keywords": [ "tangent cones", "sub-riemannian geometry", "generalise conness tangent groupoid", "sub-riemannian metric", "lie bracket generating condition" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }