{ "id": "2212.00340", "version": "v1", "published": "2022-12-01T07:58:20.000Z", "updated": "2022-12-01T07:58:20.000Z", "title": "Spectrality of a class of infinite convolutions on $\\mathbb{R}$", "authors": [ "Sha Wu", "Yingqing Xiao" ], "categories": [ "math.CA", "math.DS" ], "abstract": "Given an integer $m\\geq1$. Let $\\Sigma^{(m)}=\\{1,2, \\cdots, m\\}^{\\mathbb{N}}$ be a symbolic space, and let $\\{(b_{k},D_{k})\\}_{k=1}^{m}:=\\{(b_{k}, \\{0,1,\\cdots, p_{k}-1\\}t_{k}) \\}_{k=1}^{m}$ be a finite sequence pairs, where integers $| b_{k}| $, $p_{k}\\geq2$, $|t_{k}|\\geq 1$ and $ p_{k},t_{1},t_{2}, \\cdots, t_{m}$ are pairwise coprime integers for all $1\\leq k\\leq m$. In this paper, we show that for any infinite word $\\sigma=\\left(\\sigma_{n}\\right)_{n=1}^{\\infty}\\in\\Sigma^{(m)}$, the infinite convolution $$ \\mu_{\\sigma}=\\delta_{b_{\\sigma_{1}}^{-1} D_{\\sigma_{1}}} * \\delta_{\\left(b_{\\sigma_{1}} b_{\\sigma_{2}}\\right)^{-1} D_{\\sigma_{2}}} * \\delta_{\\left(b_{\\sigma_{1}} b_{\\sigma_{2}} b_{\\sigma_{3}}\\right)^{-1}D_{\\sigma_{3}}} * \\cdots $$ is a spectral measure if and only if $p_{\\sigma_n}\\mid b_{\\sigma_n}$ for all $n\\geq2$ and $\\sigma\\notin \\bigcup_{l=1}^\\infty\\prod_{l}$, where $\\prod_{l}=\\{i_{1}i_{2}\\cdots i_{l}j^{\\infty}\\in\\Sigma^{(m)}: i_{l}\\neq j, |b_{j}|=p_{j}, |t_{j}|\\neq1\\}$.", "revisions": [ { "version": "v1", "updated": "2022-12-01T07:58:20.000Z" } ], "analyses": { "subjects": [ "28A25", "28A80", "42C05", "46C05" ], "keywords": [ "infinite convolution", "spectrality", "finite sequence pairs", "pairwise coprime integers", "infinite word" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }