{ "id": "2211.17129", "version": "v1", "published": "2022-11-30T16:06:09.000Z", "updated": "2022-11-30T16:06:09.000Z", "title": "Ehrhart Limits", "authors": [ "Benjamin Braun", "McCabe Olsen" ], "comment": "11 pages, comments welcome", "categories": [ "math.CO" ], "abstract": "We introduce the definition of an Ehrhart limit, that is, a formal power series with integer coefficients that is the limit in the ring of formal power series of a sequence of Ehrhart $h^*$-polynomials. We identify a variety of examples of sequences of polytopes that yield Ehrhart limits, with a focus on reflexive polytopes and simplices.", "revisions": [ { "version": "v1", "updated": "2022-11-30T16:06:09.000Z" } ], "analyses": { "subjects": [ "52B20", "05A15", "11A05" ], "keywords": [ "formal power series", "yield ehrhart limits", "integer coefficients", "polynomials", "definition" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }