{ "id": "2211.16413", "version": "v1", "published": "2022-11-29T17:37:52.000Z", "updated": "2022-11-29T17:37:52.000Z", "title": "Minimal Dynamical System for $\\mathbb{R}^n$", "authors": [ "Ankit Vishnubhotla" ], "categories": [ "math.DS" ], "abstract": "We investigate $\\mathbb{R}^n$ as the additive group with the Euclidean topology to give a description of $S(\\mathbb{R}^n)$, the phase space of the universal ambit of $\\mathbb{R}^n$ and $M(\\mathbb{R}^n)$, the phase space of the universal minimal dynamical system, in terms of $M(\\mathbb{Z}^n)$, the phase space of universal minimal flow of $\\mathbb{Z}^n$. This extends work by Turek for $\\mathbb{R}$ to $\\mathbb{R}^n$.", "revisions": [ { "version": "v1", "updated": "2022-11-29T17:37:52.000Z" } ], "analyses": { "keywords": [ "phase space", "universal minimal dynamical system", "universal minimal flow", "euclidean topology", "universal ambit" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }