{ "id": "2211.15874", "version": "v1", "published": "2022-11-29T02:18:05.000Z", "updated": "2022-11-29T02:18:05.000Z", "title": "Some congruences involving generalized Bernoulli numbers and Bernoulli polynomials", "authors": [ "Ni Li", "Rong Ma" ], "comment": "21pages", "categories": [ "math.NT" ], "abstract": "Let $[x]$ be the integral part of $x$, $n>1$ be a positive integer and $\\chi_n$ denote the trivial Dirichlet character modulo $n$. In this paper, we use an identity established by Z. H. Sun to get congruences of $T_{m,k}(n)=\\sum_{x=1}^{[n/m]}\\frac{\\chi_n(x)}{x^k}\\left(\\bmod n^{r+1}\\right)$ for $r\\in \\{1,2\\}$, any positive integer $m $ with $n \\equiv \\pm 1 \\left(\\bmod m \\right)$ in terms of Bernoulli polynomials. As its an application, we also obtain some new congruences involving binomial coefficients modulo $n^4$ in terms of generalized Bernoulli numbers.", "revisions": [ { "version": "v1", "updated": "2022-11-29T02:18:05.000Z" } ], "analyses": { "subjects": [ "11B68", "11A07", "B.2" ], "keywords": [ "generalized bernoulli numbers", "bernoulli polynomials", "congruences", "trivial dirichlet character modulo", "positive integer" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }