{ "id": "2211.15290", "version": "v1", "published": "2022-11-28T13:24:49.000Z", "updated": "2022-11-28T13:24:49.000Z", "title": "Example of distance $5$ curves on closed surfaces", "authors": [ "Kuwari Mahanta" ], "comment": "21 pages, 39 figures, 1 table", "categories": [ "math.GT" ], "abstract": "Let $S_g$ denote a closed, orientable surface of genus $g \\geq 2$ and $\\mathcal{C}(S_g)$ be the associated curve graph. Let $d$ be the path metric on $\\mathcal{C}(S_g)$ and $a_0$ and $a_4$ be two curves on $S_g$ with $d(a_0, a_4) = 4$. It follows from the triangle inequality that $d(a_0, T_{a_4}(a_0)) \\leq 6$. In this article we give a criterion for when $d(a_0, T_{a_4}(a_0)) = 4$ and when $d(a_0, T_{a_4}(a_0)) \\geq 5$. We further give an explicit example of a pair of curves on $S_2$ which represent vertices at a distance $5$ in $\\mathcal{C}(S_2)$.", "revisions": [ { "version": "v1", "updated": "2022-11-28T13:24:49.000Z" } ], "analyses": { "subjects": [ "57K20", "57M60" ], "keywords": [ "closed surfaces", "path metric", "triangle inequality", "represent vertices", "associated curve graph" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }