{ "id": "2211.14188", "version": "v1", "published": "2022-11-25T15:44:03.000Z", "updated": "2022-11-25T15:44:03.000Z", "title": "Spectral Gap Inequalities on Nilpotent Lie Groups in Infinite Dimensions", "authors": [ "Esther Bou Dagher", "Yaozhong Qiu", "Boguslaw Zegarlinski", "Mengchun Zhang" ], "comment": "37 pages, 6 sections", "categories": [ "math.FA", "math.PR" ], "abstract": "We develop a general framework for spectral gap inequalities for Gibbs measures on infinite dimensional spin spaces over nilpotent Lie groups in terms of weak U-bounds and weak single-site spectral gap inequalities. We then provide sufficient conditions on the local specification and give examples of measures constructed using the Kaplan norm and generalising a few results for the Carnot-Caratheodory distance on the Heisenberg group.", "revisions": [ { "version": "v1", "updated": "2022-11-25T15:44:03.000Z" } ], "analyses": { "subjects": [ "39B62", "26D10", "22E30", "60K35" ], "keywords": [ "nilpotent lie groups", "infinite dimensions", "weak single-site spectral gap inequalities", "infinite dimensional spin spaces" ], "note": { "typesetting": "TeX", "pages": 37, "language": "en", "license": "arXiv", "status": "editable" } } }