{ "id": "2211.12106", "version": "v1", "published": "2022-11-22T09:16:27.000Z", "updated": "2022-11-22T09:16:27.000Z", "title": "Non-uniqueness for the nonlocal Liouville equation in $\\mathbb{R}$ and applications", "authors": [ "Luca Battaglia", "Matteo Cozzi", "Antonio J. Fernández", "Angela Pistoia" ], "categories": [ "math.AP" ], "abstract": "We construct multiple solutions to the nonlocal Liouville equation \\begin{equation} \\label{eqk} \\tag{L} (-\\Delta)^{\\frac{1}{2}} u = K(x) e^u \\quad \\mbox{ in } \\mathbb{R}. \\end{equation} More precisely, for $K$ of the form $K(x) = 1+\\varepsilon \\kappa(x)$ with $\\varepsilon \\in (0,1)$ small and $\\kappa \\in C^{1,\\alpha}(\\mathbb{R}) \\cap L^{\\infty}(\\mathbb{R})$ for some $\\alpha > 0$, we prove existence of multiple solutions to \\eqref{eqk} bifurcating from the bubbles. These solutions provide examples of flat metrics in the half-plane with prescribed geodesic curvature $K(x)$ on its boundary. Furthermore, they imply the existence of multiple ground state soliton solutions for the Calogero-Moser derivative NLS.", "revisions": [ { "version": "v1", "updated": "2022-11-22T09:16:27.000Z" } ], "analyses": { "subjects": [ "35R11", "35A02", "35C08", "30F45" ], "keywords": [ "nonlocal liouville equation", "multiple ground state soliton solutions", "applications", "non-uniqueness", "construct multiple solutions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }