{ "id": "2211.10644", "version": "v1", "published": "2022-11-19T10:16:25.000Z", "updated": "2022-11-19T10:16:25.000Z", "title": "A Generalisation of Euler Totient Function", "authors": [ "Vlad Robu" ], "comment": "5 pages", "categories": [ "math.NT" ], "abstract": "Euler's totient function, $\\varphi(n)$, which counts how many of $0,1,\\dots,n-1$ are coprime to $n$, has an explicit asymptotic lower bound of $n/\\log \\log n$, modulo some constant. In this note, we generalise $\\varphi$; given an irreducible integer polynomial $P$, we define the arithmetic function $\\varphi_P(n)$ that counts the amount of numbers among $P(0),P(1),\\dots,P(n-1)$ that are coprime to $n$. We also provide an asymptotic lower bound for $\\varphi_P(n)$.", "revisions": [ { "version": "v1", "updated": "2022-11-19T10:16:25.000Z" } ], "analyses": { "subjects": [ "11C08", "11N37" ], "keywords": [ "euler totient function", "generalisation", "explicit asymptotic lower bound", "eulers totient function", "arithmetic function" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }