{ "id": "2211.06730", "version": "v1", "published": "2022-11-12T19:32:35.000Z", "updated": "2022-11-12T19:32:35.000Z", "title": "Stability of the positive mass theorem in dimension three", "authors": [ "Conghan Dong" ], "comment": "22 pages", "categories": [ "math.DG", "gr-qc" ], "abstract": "In this paper, we show that for a sequence of oriented complete pointed uniformly asymptotically Euclidean $3$-manifolds $(M_i, g_i, p_i)$ with non-negative integrable scalar curvature $R_{g_i}\\geq 0$, if their mass $m(g_i)\\to 0$, then by subtracting some subsets $Z_i\\subset M_i$ whose boundary area $|\\partial Z_i|\\leq C m(g_i)^{1/2}$, up to diffeomorphisms, $(M_i \\setminus Z_i, g_i, p_i)$ converge to the Euclidean space $\\mathbb{R}^3$ in the pointed metric topology. This confirms Huisken-Ilmanen's conjecture in terms of the flat metric topology. Moreover, if we assume the Ricci curvature bounded from below uniformly by $Ric_{g_i}\\geq -2 \\Lambda$, then $(M_i, g_i, p_i)$ converge to $\\mathbb{R}^3$ in the pointed Gromov-Hausdorff topology.", "revisions": [ { "version": "v1", "updated": "2022-11-12T19:32:35.000Z" } ], "analyses": { "keywords": [ "positive mass theorem", "confirms huisken-ilmanens conjecture", "flat metric topology", "gromov-hausdorff topology", "non-negative integrable scalar curvature" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }