{ "id": "2211.05819", "version": "v1", "published": "2022-11-10T19:21:50.000Z", "updated": "2022-11-10T19:21:50.000Z", "title": "An Erdős-Kac theorem for integers with dense divisors", "authors": [ "Gérald Tenenbaum", "Andreas Weingartner" ], "comment": "28 pages", "categories": [ "math.NT" ], "abstract": "We show that for large integers $n$, whose ratios of consecutive divisors are bounded above by an arbitrary constant, the number of prime factors follows an approximate normal distribution, with mean $C \\log_2 n$ and variance $V \\log_2 n$, where $C=1/(1-e^{-\\gamma})\\approx 2.280$ and $V\\approx 0.414$. This result is then generalized in two different directions.", "revisions": [ { "version": "v1", "updated": "2022-11-10T19:21:50.000Z" } ], "analyses": { "subjects": [ "11N60", "11N25", "11N37" ], "keywords": [ "dense divisors", "erdős-kac theorem", "approximate normal distribution", "prime factors", "arbitrary constant" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }