{ "id": "2211.05511", "version": "v1", "published": "2022-11-10T12:08:10.000Z", "updated": "2022-11-10T12:08:10.000Z", "title": "The fractional Laplacian with reflections", "authors": [ "Krzysztof Bogdan", "Markus Kunze" ], "comment": "26 pages, no figures", "categories": [ "math.PR", "math.AP", "math.FA" ], "abstract": "Motivated by the notion of isotropic $\\alpha$-stable L\\'evy processes confined, by reflections, to a bounded open Lipschitz set $D\\subset \\mathbb{R}^d$, we study some related analytical objects. Thus, we construct the corresponding transition semigroup, identify its generator and prove exponential speed of convergence of the semigroup to a unique stationary distribution for large time.", "revisions": [ { "version": "v1", "updated": "2022-11-10T12:08:10.000Z" } ], "analyses": { "subjects": [ "47D06", "60J35" ], "keywords": [ "fractional laplacian", "reflections", "bounded open lipschitz set", "unique stationary distribution", "stable levy processes" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }