{ "id": "2211.04885", "version": "v1", "published": "2022-11-09T13:46:13.000Z", "updated": "2022-11-09T13:46:13.000Z", "title": "The Caffarelli-Kohn-Nirenberg Inequalities For Radial Functions", "authors": [ "Arka Mallick", "Hoai-minh Nguyen" ], "categories": [ "math.AP" ], "abstract": "We establish the full range of the Caffarelli-Kohn-Nirenberg inequalities for radial functions in the Sobolev and the fractional Sobolev spaces of order $0 < s \\le 1$. In particular, we show that the range of the parameters for radial functions is strictly larger than the one without symmetric assumption. Previous known results reveal only some special ranges of parameters even in the case $s=1$. Our proof is new and can be easily adapted to other contexts. Applications on compact embeddings are also mentioned.", "revisions": [ { "version": "v1", "updated": "2022-11-09T13:46:13.000Z" } ], "analyses": { "subjects": [ "26D10", "26A54" ], "keywords": [ "radial functions", "caffarelli-kohn-nirenberg inequalities", "fractional sobolev spaces", "full range", "compact embeddings" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }