{ "id": "2211.04708", "version": "v1", "published": "2022-11-09T07:02:54.000Z", "updated": "2022-11-09T07:02:54.000Z", "title": "Computation of Hecke eigenvalues (mod $p$) via quaternions", "authors": [ "Yiannis Fam" ], "comment": "25 pages", "categories": [ "math.NT" ], "abstract": "In a 1987 letter, Serre proves that the systems of Hecke eigenvalues arising from mod $p$ modular forms (of fixed level $\\Gamma(N)$ coprime to $p$, and any weight $k$) are the same as those arising from functions $\\Omega(N) \\to \\bar{\\mathbb F}_p$, where $\\Omega(N)$ is some double quotient of $D^\\times (\\mathbb A_f)$ and $D$ is the unique quaternion algebra over $\\mathbb Q$ ramified at $\\{p,\\infty\\}$. We present an algorithm which then computes these Hecke eigenvalues on the quaternion side in a combinatorial manner.", "revisions": [ { "version": "v1", "updated": "2022-11-09T07:02:54.000Z" } ], "analyses": { "subjects": [ "11R52", "11F30" ], "keywords": [ "computation", "unique quaternion algebra", "combinatorial manner", "modular forms", "quaternion side" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }