{ "id": "2211.03278", "version": "v1", "published": "2022-11-07T03:03:11.000Z", "updated": "2022-11-07T03:03:11.000Z", "title": "The algebraic Brauer group of a reductive group over a nonarchimedean local field", "authors": [ "Dylon Chow" ], "categories": [ "math.NT" ], "abstract": "We show that for nonarchimedean local fields $F$, the pairing from the algebraic part of the Brauer group of a reductive group $G$ characterizes all continuous homomorphisms from $G(F)$ into $\\mathbb{Q}/\\mathbb{Z}$. This generalizes results of Loughran and Loughran-Tanimoto-Takloo-Bighash.", "revisions": [ { "version": "v1", "updated": "2022-11-07T03:03:11.000Z" } ], "analyses": { "keywords": [ "nonarchimedean local field", "algebraic brauer group", "reductive group", "algebraic part", "generalizes results" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }