{ "id": "2211.03056", "version": "v1", "published": "2022-11-06T08:02:57.000Z", "updated": "2022-11-06T08:02:57.000Z", "title": "Strong solutions of the Landau-Lifshitz-Bloch equation in Besov space", "authors": [ "Yi Peng", "Huaqiao Wang" ], "comment": "20 pages", "categories": [ "math.AP" ], "abstract": "We focus on the existence and uniqueness of the three-dimensional Landau-Lifshitz-Bloch equation supplemented with the initial data in Besov space $\\dot{B}_{2,1}^{\\frac{3}{2}}$. Utilizing a new commutator estimate, we establish the local existence and uniqueness of strong solutions for any initial data in $\\dot{B}_{2,1}^{\\frac{3}{2}}$. When the initial data is small enough in $\\dot{B}_{2,1}^{\\frac{3}{2}}$, we obtain the global existence and uniqueness. Furthermore, we also establish a blow-up criterion of the solution to the Landau-Lifshitz-Bloch equation and then we prove the global existence of strong solutions in Sobolev space under a new condition based on the blow-up criterion.", "revisions": [ { "version": "v1", "updated": "2022-11-06T08:02:57.000Z" } ], "analyses": { "subjects": [ "82D40", "35K10", "35K59", "35D35" ], "keywords": [ "strong solutions", "besov space", "initial data", "blow-up criterion", "global existence" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }