{ "id": "2211.00853", "version": "v1", "published": "2022-11-02T03:49:03.000Z", "updated": "2022-11-02T03:49:03.000Z", "title": "Questions about extreme points", "authors": [ "Konstantin M. Dyakonov" ], "comment": "10 pages", "categories": [ "math.FA", "math.CA", "math.CV" ], "abstract": "We discuss the geometry of the unit ball -- specifically, the structure of its extreme points (if any) -- in subspaces of $L^1$ and $L^\\infty$ on the circle that are formed by functions with prescribed spectral gaps. A similar issue is considered for kernels of Toeplitz operators in $H^\\infty$.", "revisions": [ { "version": "v1", "updated": "2022-11-02T03:49:03.000Z" } ], "analyses": { "subjects": [ "30H05", "30H10", "42A32", "46A55", "47B35" ], "keywords": [ "extreme points", "unit ball", "prescribed spectral gaps", "similar issue", "toeplitz operators" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }