{ "id": "2210.17231", "version": "v1", "published": "2022-10-31T11:19:23.000Z", "updated": "2022-10-31T11:19:23.000Z", "title": "Separated monic correspondence of cotorsion pairs and semi-Gorenstein-projective modules", "authors": [ "Xiu-Hua Luo", "Shijie Zhu" ], "comment": "19 pages", "categories": [ "math.RT" ], "abstract": "Given a finite dimensional algebra $A$ over a field $k$, and a finite acyclic quiver $Q$, let $\\Lambda = A\\otimes_k kQ/I$, where $kQ$ is the path algebra of $Q$ over $k$ and $I$ is a monomial ideal. We show that $(\\mathcal X,\\mathcal Y)$ is a (complete) hereditary cotorsion pair in $A$-mod if and only if $({\\rm smon}(Q,I,\\mathcal X), {\\rm rep}(Q,I,\\mathcal Y))$ is a (complete) hereditary cotorsion pair in $\\Lambda$-mod. We also show that $A$ is left weakly Gorenstein if and only if so is $\\Lambda$. Provided that $kQ/I$ is non-semisimple, the category $^{\\perp}\\Lambda$ of semi-Gorenstein-projective $\\Lambda$-modules coincides with the category of separated monic representations ${\\rm smon}(Q,I,^{\\perp}A)$ if and only if $A$ is left weakly Gorenstein.", "revisions": [ { "version": "v1", "updated": "2022-10-31T11:19:23.000Z" } ], "analyses": { "subjects": [ "16G10", "16G50", "16E65", "16B50" ], "keywords": [ "separated monic correspondence", "semi-gorenstein-projective modules", "hereditary cotorsion pair", "left weakly gorenstein", "finite acyclic quiver" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }