{ "id": "2210.15774", "version": "v1", "published": "2022-10-27T21:14:20.000Z", "updated": "2022-10-27T21:14:20.000Z", "title": "Sharp log-Sobolev inequalities in ${\\sf CD}(0,N)$ spaces with applications", "authors": [ "Zoltán M. Balogh", "Alexandru Kristály", "Francesca Tripaldi" ], "comment": "33 pages", "categories": [ "math.AP", "math.DG", "math.FA" ], "abstract": "Given $p,N>1,$ we prove the sharp $L^p$-log-Sobolev inequality on metric measure spaces satisfying the ${\\sf CD}(0,N)$ condition, where the optimal constant involves the asymptotic volume ratio of the space. Combining the sharp $L^p$-log-Sobolev inequality with the Hamilton-Jacobi inequality, we establish a sharp hypercontractivity estimate for the Hopf-Lax semigroup in ${\\sf CD}(0,N)$ spaces. Moreover, a Gaussian-type $L^2$-log-Sobolev inequality is also obtained in ${\\sf RCD}(0,N)$ spaces. Our results are new, even in the smooth setting of Riemannian/Finsler manifolds.", "revisions": [ { "version": "v1", "updated": "2022-10-27T21:14:20.000Z" } ], "analyses": { "keywords": [ "log-sobolev inequality", "sharp log-sobolev inequalities", "applications", "asymptotic volume ratio", "sharp hypercontractivity estimate" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }