{ "id": "2210.14175", "version": "v1", "published": "2022-10-25T17:09:42.000Z", "updated": "2022-10-25T17:09:42.000Z", "title": "Line Congruences on singular surfaces", "authors": [ "Débora Lopes", "Tito Alexandro Medina Tejeda", "Maria Aparecida Soares Ruas", "Igor Chagas Santos" ], "categories": [ "math.DG" ], "abstract": "This paper is a first step in order to extend Kummer's theory for line congruences to the case $\\lbrace x, \\xi \\rbrace $, where $x: U \\rightarrow \\mathbb{R}^3$ is a smooth map and $\\xi: U \\rightarrow \\mathbb{R}^3$ is a proper frontal. We show that if $\\lbrace x, \\xi \\rbrace$ is a normal congruence, the equation of the principal surfaces is a multiple of the equation of the developable surfaces, furthermore, the multiplicative factor is associated to the singular set of $\\xi$.", "revisions": [ { "version": "v1", "updated": "2022-10-25T17:09:42.000Z" } ], "analyses": { "keywords": [ "line congruences", "singular surfaces", "extend kummers theory", "smooth map", "proper frontal" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }